Nowhere-zero 3-flows in signed graphs with independence number at most two
报告学者:陆由 教授
报告者单位:西北工业大学
报告时间:2024年4月16日(周二)14:00--14:45
报告地点:腾讯会议
报告摘要:Tutte's 3-flow conjecture states that every 4-edge-connected graph admits a nowhere-zero 3-flow. Lov\'asz et al. proved that every 6-edge-connected graph admits a nowhere-zero 3-flow [JCTB, 103 (2013): 587-598]. As an extension of the 3-flow conjecture, Wu et al. conjectured that every flow-admissible 5-edge-connected signed graph admits a nowhere-zero 3-flow, and confirmed it on 8-edge-connected signed graphs [SIAMDM, 28 (3) (2014): 1628-1637]. M\'a\v{c}ajov\'a and Rollov\'a verified this conjecture for signed complete graphs on at least 6 vertices [JGT, 78 (2) (2015): 108-130]. In this talk, we show that every flow-admissible 5-edge-connected signed graph with independence number at most two admits a nowhere-zero 3-flow.
报告人简介:陆由,西北工业大学教授,博士生导师。2010年获中国科学技术大学博士学位,2014年赴美国西弗吉尼亚大学访学12个月。现担任陕西省工业与应用数学学会常务理事、中国工业与应用数学学会图论组合及应用专委会委员。从事图论研究,特别是子图覆盖、整数流、染色理论研究。先后主持国家自然科学基金项目3项,省自然科学基金项目2项;在J Combin Theory Ser B、J Graph Theory、SIAM J Discrete Math、European J Combin等期刊上发表学术论文近40篇,获陕西高等学校科学技术研究优秀成果一等奖1项(2/5),陕西省自然科学优秀学术论文二等奖1项、陕西省工业与应用数学学会青年优秀论文一等奖1项。