Graph complexes, Kontsevich's characteristic classes and formal smooth structures

报告学者:林剑锋

报告者单位:清华大学

报告时间:2024年4月24日下午3:00---4:30

报告地点:8教203

报告摘要: In 2018, Watanabe disproved the 4-dimensional Smale conjecture by showing that the diffeomorphism group of a 4-dimensional disk relative to its boundary is noncontractible. A central tool in Watanabe's argument is a version of Kontsevich's characteristic classes for disk bundles, which takes value in the  homology of certain chain complexes of graphs. I will talk about the definition of graph complexes and Kontsevich's characteristic classes. And I will discuss our recent work that these invariants only  depend on formal smooth structures (i.e.,  lift of the tangent microbundle to a vector bundle).  Some applications  about moduli spaces of 4-manifolds will be given . (This is a joint work with Yi Xie.)

学者简介:林剑锋副教授,2005-2012北京大学本科及硕士;于2016在美国加州大学洛杉矶分校获得博士学位,师从天才拓扑学家 Ciprian Manolescu. 2016-2019 美国麻省理工学院讲师;2019-2021美国加州大学圣地亚哥分校助理教授;2021年至今清华大学副教授。主要从事低维拓扑领域的研究工作。