Ricci flow with curvature L^p-bound
报告学者:沈良明
报告者单位:北京航天航空大学
报告时间:2024/06/26 3:00-4:00 pm
报告地点:七教7215
报告摘要:In this talk, we consider Ricci flow with curvature L^p bound for p > n/4 and bounded scalar curvature. We show an isoperimetric inequality along such Ricci flow, which generalizes
Tian-Q.Zhang’s result. We also consider the convergence of this flow and show that there exists a sequence of time slice metrics converging to a Ricci soliton outside a closed singular set with codimension 2p, the convergence is smooth outside the singular set. Moreover, in the Kahler Ricci flow, we can estimate the Hausdorff measure of this singular set. This work is joint with C.Li and T. Zheng
报告学者简介:沈良明,2015年在田刚院士指导下从普林斯顿大学获得博士学位,研究方向为几何分析、复几何。现任北京航空航天大学数学科学学院教授,国家级青年人才(青年长江),在Crelle’s journal, Advance in math, JFA, IMRN, 中国科学等国际著名数学期刊上发表论文十余篇。