An 8-flow theorem for signed graphs
报告学者:Rong Luo 教授
报告者单位:美国西弗尼吉亚大学
报告时间:2024年7月1日(周一)21:00--22:00
报告地点:线上腾讯会议:827-280-4645
报告摘要:We prove that a signed graph admits a nowhere-zero 8-flow provided that it is flow-admissible and the underlying graph admits a nowhere-zero 4-flow. When combined with the 4-color theorem, this implies that every flow-admissible bridgeless planar signed graph admits a nowhere-zero $8$-flow. Our result improves and generalizes previous results of Li et al. (European J. Combin. 108 (2023), 103627), which state that every flow-admissible signed 3-edge-colorable cubic graph admits a nowhere-zero10-flow, and that every flow-admissible signed hamiltonian graph admits a nowhere-zero 8-flow. Joint work with Edita M\'a\v cajov\'a, Martin \v Skoviera and Cun-Quan Zhang.
报告人简介:Rong Luo,美国西弗吉尼亚大学(West Virginia University,USA)数学系教授,国际知名的图论专家。主要研究兴趣有图与组合、组合矩阵论以及图论在化学和生物学上的应用,先后在Journal of Combinatorial Theory Ser. B, Journal of Graph Theory, SIAM Journal on Discrete Math,以及European Journal of Combinatorics等图论期刊上发表SCI论文70余篇,在图染色以及整数流等理论上有一系列突破性进展。