A 2-categorical systematic way to induce G-precoverings and its applications

报告学者:Hideto Asashiba

报告者单位:静冈大学/京都大学 高等研究院

报告时间:2024年11月5日 下午 14:30-16:30

报告地点:建艺楼209

报告摘要:Throughout this talk G is a fixed group, and k is a fixed field.  All categories are assumed to be k-linear.

First, we give a systematic way to induce G-precoverings by adjoint functors using a 2-categorical machinery. Now let C be a skeletally small category with a G-action, C/G the orbit category of C, (P, \phi) : C —> C/G the canonical G-covering, and mod C, mod C/G the categories of finitely generated modules over C, C/G, respectively.

Then there exists a canonical G-precovering (P., \phi.) : mod C —> mod C/G.

We then apply this machinery to produce G-precoverings (mod C)/S —> (mod C/G)/S’ between the factor categories or localizations of mod C and mod C/G from the precovering (P., \phi.).

This is further applied to the morphism category H(mod C) of mod C to have a G-precovering fp(K) —> fp(K’) between suitable subcategories K and K’ of the categories of finitely presented modules over mod C and mod C/G, respectively.

This is a joint work with Rasool Hafezi and Mohammad Hossein Keshavarz.

报告学者简介Hideto Asashiba教授是日本静冈大学荣誉退休教授,京都大学数学研究中心与大阪市立大学的研究员。2024年日本数学会代数学奖的获得者。在导出等价的构造方法的研究取得了一系列有影响力的结果。其中关于Grothendieck构造的导出等价的结果发表在Adv. Math. 235(2013), 134-160。在导出等价、稳定等价与Gabriel 覆盖理论相关方面的研究,处于前沿地位。我们关于微分分次范畴2范畴的导出范畴的粘合和Grothendieck构造的合作已经完成,下一步,我们进一步研究这方面的相关问题。希望邀请Hideto Asashiba教授,希望借鉴Hideto Asashiba教授在导出等价与覆盖理论的成功的经验,用导出等价于覆盖理论研究群论。