Some Recent Advances on Maximal Functions Related to Hyperurfaces in
报告学者:李文娟
报告者单位:西北工业大学
报告时间:11月13日 15:30-16:10
报告地点:七教7215
报告摘要:Through a series of recent papers, Müller et al. have nearly settled the problem of optimal $L^p$-boundedness for maximal operators associated with smooth hypersurfaces of finite type satisfying the transversality condition (with the exception of a small class). However, for smooth hypersurfaces that fail to satisfy the transversality condition, very few optimal estimates have been established for their associated maximal operators. I will give a talk about our recent advances of optimal boundedness results for maximal operators associated with a class of smooth hypersurfaces that do not satisfy the transversality condition. This is a joint work with Huiju Wang, Stefan Buschenhenke.
报告学者简介:李文娟, 西北工业大学数学与统计学院教授,博导。2015年博士毕业于德国基尔大学,2018年入选陕西省高层次人才青年项目,2019年入选西北工业大学翱翔新星计划项目。目前主持国家自然科学基金面上项目;参与国家重点研发计划青年科学家项目(骨干成员)。主要从事调和分析中算子有界性方面的研究,如与流形相关的极大函数有界估计等。已在JMPA,JFAA,JFA,RMI,MZ 等国际知名期刊上发表论文20余篇。曾应邀访问美国伊利诺伊大学香槟分校、印第安纳大学伯明顿分校、韩国首尔国立大学等。